Substitution


Set Implicit Arguments.

Require Import String.
Require Import Definitions Binding Weakening.

Ltac subst_open_fresh :=
  repeat match goal with
    | [ |- context [ open_typ ?z (subst_typ ?x ?y ?T) ] ] =>
        replace (open_typ z (subst_typ x y T)) with (open_typ (subst_fvar x y z) (subst_typ x y T))
          by (unfold subst_fvar; rewrite~ If_r);
        rewrite_all <- subst_open_commut_typ
    | [ |- context [ open_defs ?z (subst_defs ?x ?y ?ds) ] ] =>
        replace (open_defs z (subst_defs x y ds)) with (open_defs (subst_fvar x y z) (subst_defs x y ds))
          by (unfold subst_fvar; rewrite~ If_r);
        rewrite_all <- subst_open_commut_defs
     | [ |- context [ open_trm ?z (subst_trm ?x ?y ?t) ] ] =>
        replace (open_trm z (subst_trm x y t)) with (open_trm (subst_fvar x y z) (subst_trm x y t))
          by (unfold subst_fvar; rewrite~ If_r);
        rewrite_all <- subst_open_commut_trm
    end.

Ltac subst_solver :=
    fresh_constructor;
    subst_open_fresh;
    match goal with
    | [ H: forall z, z \notin ?L -> forall G, _
        |- context [ _ & subst_ctx ?x ?y ?G2 & ?z ~ subst_typ ?x ?y ?V] ] =>
        rewrite <- concat_assoc; rewrite subst_ctx_push;
        apply H; try rewrite <- subst_ctx_push; try rewrite concat_assoc;
        unfold subst_ctx; auto using weaken_ty_trm
    end.

Ltac fold_subst :=
  repeat match goal with
    | [ |- context [ trm_var (avar_f (If ?x = ?y then ?z else ?x)) ] ] =>
        asserts_rewrite (trm_var (avar_f (If x = y then z else x))
                         = subst_trm y z (trm_var (avar_f x))); auto
    | [ |- context [ open_typ (If ?x = ?y then ?z else ?x) (subst_typ ?y ?z ?T) ] ] =>
        asserts_rewrite (open_typ (If x = y then z else x) (subst_typ y z T)
                     = subst_typ y z (open_typ x T)); auto end.

Substitution Lemma

G1, x: S, G2 t: T
ok(G1, x: S, G2)
x \notin fv(G1)
G1, G2[y/x] y: S[y/x]
―――――――――――――――――――――――――――――
G1, G2[y/x] t[y/x]: T[y/x]

and
G1, x: S, G2 d: D
ok(G1, x: S, G2)
x \notin fv(G1)
G1, G2[y/x] y: S[y/x]
―――――――――――――――――――――――――――――
G1, G2[y/x] d[y/x]: D[y/x]

and
G1, x: S, G2 ds: T
ok(G1, x: S, G2)
x \notin fv(G1)
G1, G2[y/x] y: S[y/x]
――――――――――――――――――――――――――――――
G1, G2[y/x] ds[y/x]: T[y/x]

and
G1, x: S, G2 T <: U
ok(G1, x: S, G2)
x \notin fv(G1)
G1, G2[y/x] y: S[y/x]
―――――――――――――――――――――――――――――――
G1, G2[y/x] T[y/x] <: U[y/x]

The proof is by mutual induction on term typing, definition typing, and subtyping.
Lemma subst_rules: forall y S,
  (forall G t T, G t : T -> forall G1 G2 x,
    G = G1 & x ~ S & G2 ->
    ok (G1 & x ~ S & G2) ->
    x \notin fv_ctx_types G1 ->
    G1 & (subst_ctx x y G2) trm_var (avar_f y) : subst_typ x y S ->
    G1 & (subst_ctx x y G2) subst_trm x y t : subst_typ x y T) /\
  (forall G d D, G /- d : D -> forall G1 G2 x,
    G = G1 & x ~ S & G2 ->
    ok (G1 & x ~ S & G2) ->
    x \notin fv_ctx_types G1 ->
    G1 & (subst_ctx x y G2) trm_var (avar_f y) : subst_typ x y S ->
    G1 & (subst_ctx x y G2) /- subst_def x y d : subst_dec x y D) /\
  (forall G ds T, G /- ds :: T -> forall G1 G2 x,
    G = G1 & x ~ S & G2 ->
    ok (G1 & x ~ S & G2) ->
    x \notin fv_ctx_types G1 ->
    G1 & (subst_ctx x y G2) trm_var (avar_f y) : subst_typ x y S ->
    G1 & (subst_ctx x y G2) /- subst_defs x y ds :: subst_typ x y T) /\
  (forall G T U, G T <: U -> forall G1 G2 x,
    G = G1 & x ~ S & G2 ->
    ok (G1 & x ~ S & G2) ->
    x \notin fv_ctx_types G1 ->
    G1 & (subst_ctx x y G2) trm_var (avar_f y) : subst_typ x y S ->
    G1 & (subst_ctx x y G2) subst_typ x y T <: subst_typ x y U).
Proof.
  introv. apply rules_mutind; intros; subst; simpl;
            try (subst_solver || rewrite subst_open_commut_typ);
            simpl in *; eauto 4.
  - Case "ty_var"%string.
    cases_if.
    + apply binds_middle_eq_inv in b; subst; assumption.
    + eapply subst_fresh_ctx in H1.
      apply binds_subst in b; auto.
      constructor. rewrite <- H1.
      unfold subst_ctx. rewrite <- map_concat.
      apply binds_map; auto.
  - Case "ty_rec_intro"%string.
    apply ty_rec_intro. fold_subst.
    rewrite subst_open_commut_typ. auto. eauto.
  - Case "ty_defs_cons"%string.
    constructor*. rewrite <- subst_label_of_def. apply* subst_defs_hasnt.
Qed.

The substitution lemma for term typing. This lemma corresponds to Lemma 3.19 in the paper.
Lemma subst_ty_trm: forall y S G x t T,
    G & x ~ S t : T ->
    ok (G & x ~ S) ->
    x \notin fv_ctx_types G ->
    G trm_var (avar_f y) : subst_typ x y S ->
    G subst_trm x y t : subst_typ x y T.
Proof.
  intros.
  apply (proj51 (subst_rules y S)) with (G1:=G) (G2:=empty) (x:=x) in H;
  unfold subst_ctx in *; try rewrite map_empty in *; try rewrite concat_empty_r in *; auto.
Qed.

The substitution lemma for definition typing.
Lemma subst_ty_defs: forall y S G x ds T,
    G & x ~ S /- ds :: T ->
    ok (G & x ~ S) ->
    x \notin fv_ctx_types G ->
    G trm_var (avar_f y) : subst_typ x y S ->
    G /- subst_defs x y ds :: subst_typ x y T.
Proof.
  intros.
  apply (proj53 (subst_rules y S)) with (G1:=G) (G2:=empty) (x:=x) in H;
    unfold subst_ctx in *; try rewrite map_empty in *;
      try rewrite concat_empty_r in *; auto.
Qed.

Renaming

Renaming the name of the opening variable for definition typing.
ok G
z fresh
G, z: T^z ds^z : T^z
G x: T^x
――――――――――――――――――――――
G ds^x : T^x
Lemma renaming_def: forall G z T ds x,
    ok G ->
    z # G ->
    z \notin (fv_ctx_types G \u fv_defs ds \u fv_typ T) ->
    G & z ~ open_typ z T /- open_defs z ds :: open_typ z T ->
    G trm_var (avar_f x) : open_typ x T ->
    G /- open_defs x ds :: open_typ x T.
Proof.
  introv Hok Hnz Hnz' Hz Hx. rewrite subst_intro_typ with (x:=z). rewrite subst_intro_defs with (x:=z).
  eapply subst_ty_defs; auto. eapply Hz. rewrite <- subst_intro_typ. all: auto.
Qed.

Renaming the name of the opening variable for term typing.
ok G
z fresh
G, z: U t^z : T^z
G x: U
――――――――――――――――――――――
G t^x : T^x
Lemma renaming_typ: forall G z T U t x,
    ok G ->
    z # G ->
    z \notin (fv_ctx_types G \u fv_typ U \u fv_typ T \u fv_trm t) ->
    G & z ~ U open_trm z t : open_typ z T ->
    G trm_var (avar_f x) : U ->
    G open_trm x t : open_typ x T.
Proof.
  introv Hok Hnz Hnz' Hz Hx. rewrite subst_intro_typ with (x:=z). rewrite subst_intro_trm with (x:=z).
  eapply subst_ty_trm; auto. eapply Hz. rewrite subst_fresh_typ. all: auto.
Qed.

Renaming the name of the opening variable for term typing.
ok G
z fresh
G, z: U t^z : T^z
――――――――――――――――――――――
G t^x : T^x
Lemma renaming_fresh : forall L G T u U x,
    ok G ->
    (forall x : var, x \notin L -> G & x ~ T open_trm x u : U) ->
    G trm_var (avar_f x) : T ->
    G open_trm x u : U.
Proof.
  introv Hok Hu Hx. pick_fresh y.
  rewrite subst_intro_trm with (x:=y); auto.
  rewrite <- subst_fresh_typ with (x:=y) (y:=x); auto.
  apply~ subst_ty_trm. rewrite~ subst_fresh_typ.
Qed.