Reduction

Set Implicit Arguments.

Require Import Coq.Program.Equality.
Require Import Definitions Lookup Sequences.

Operational Semantics

Term-reduction relation
Reserved Notation "t1 '⟼' t2" (at level 40, t2 at level 39).

Inductive red : sta × trm sta × trm Prop :=

γ q ⤳* λ(T)t
―――――――――――――――――――――
γ | q p γ | t
| red_app: γ p q T t,
    γ defp q ⤳* defv (λ(T) t)
    (γ, trm_app q p) (γ, open_trm_p p t)

γ | let x = v in t γ, x = v | tˣ
| red_let_val : v t γ x,
    x # γ
    (γ, trm_let (trm_val v) t) (γ & x ¬ v, open_trm x t)

γ | let y = p in t γ | t
| red_let_path : t γ p,
    (γ, trm_let (trm_path p) t) (γ, open_trm_p p t)

γ | t0 γ' | t0'
―――――――――――――――――――――――――――――――――――――――――――――――
γ | let x = t0 in t γ' | let x = t0' in t
| red_let_tgt : t0 t γ t0' γ',
    (γ, t0) (γ', t0')
    (γ, trm_let t0 t) (γ', trm_let t0' t)

where "t1 '⟼' t2" := (red t1 t2).

Reflexive, transitive closure of reduction relation
Notation "t1 '⟼*' t2" := (star red t1 t2) (at level 40).

Normal forms

Paths and values are considered to be in normal form.
Inductive norm_form: trm Prop :=
| nf_path: p, norm_form (trm_path p)
| nf_val: v, norm_form (trm_val v).

Hint Constructors red norm_form.